Differential divalent cation requirements uncouple the assembly and catalytic reactions of human immunodeficiency virus type 1 integrase.

نویسندگان

  • D J Hazuda
  • P J Felock
  • J C Hastings
  • B Pramanik
  • A L Wolfe
چکیده

Previous in vitro analyses have shown that the human immunodeficiency virus type 1 (HIV-1) integrase uses either manganese or magnesium to assemble as a stable complex on the donor substrate and to catalyze strand transfer. We now demonstrate that subsequent to assembly, catalysis of both 3' end processing and strand transfer requires a divalent cation cofactor and that the divalent cation requirements for assembly and catalysis can be functionally distinguished based on the ability to utilize calcium and cobalt, respectively. The different divalent cation requirements manifest by these processes are exploited to uncouple assembly and catalysis, thus staging the reaction. Staged 3' end processing and strand transfer assays are then used in conjunction with exonuclease III protection analysis to investigate the effects of integrase inhibitors on each step in the reaction. Analysis of a series of related inhibitors demonstrates that these types of compounds affect assembly and not either catalytic process, therefore reconciling the apparent disparate results obtained for such inhibitors in assays using isolated preintegration complexes. These studies provide evidence for a distinct role of the divalent cation cofactor in assembly and catalysis and have implications for both the identification and characterization of integrase inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potent inhibitors of human immunodeficiency virus type 1 integrase: identification of a novel four-point pharmacophore and tetracyclines as novel inhibitors.

A four-point pharmacophore was constructed from energy-minimized structures of chicoric acid and dicaffeoylquinic acid. The search of 206,876 structures in the National Cancer Institute 3D database yielded 179 compounds that contain this pharmacophore. Thirty-nine of these compounds were tested in an in vitro assay specific for human immunodeficiency virus type 1 integrase (IN). Each retrieved ...

متن کامل

Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors.

Human immunodeficiency virus (HIV) type 1 (HIV-1) integrase is an underutilized drug target for the treatment of HIV infection. One limiting factor is the lack of costructural data for use in the rational design or modification of integrase inhibitors. Tn5 transposase is a structurally well characterized, related protein that may serve as a useful surrogate. However, little data exist on inhibi...

متن کامل

Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor.

The x-ray structures of an inhibitor complex of the catalytic core domain of avian sarcoma virus integrase (ASV IN) were solved at 1.9- to 2.0-A resolution at two pH values, with and without Mn2+ cations. This inhibitor (Y-3), originally identified in a screen for inhibitors of the catalytic activity of HIV type 1 integrase (HIV-1 IN), was found in the present study to be active against ASV IN ...

متن کامل

Inhibition of human immunodeficiency virus type 1 integrase by 3'-azido-3'-deoxythymidylate.

The effects of 3'-azido-3'-deoxythymidine (AZT) and three of its intracellular metabolites, azido- thymidine mono-, di-, and triphosphates, on the human immunodeficiency virus type 1 integrase have been determined. AZT mono-, di-, and triphosphate have an IC50 for integration between 110 and 150 microM, whereas AZT does not inhibit the integrase. The inhibition by AZT monophosphate can be parti...

متن کامل

Integration is required for productive infection of monocyte-derived macrophages by human immunodeficiency virus type 1.

Certain human immunodeficiency virus type 1 (HIV-1) isolates are able to productively infect nondividing cells of the monocyte/macrophage lineage. We have used a molecular genetic approach to construct two different HIV-1 integrase mutants that were studied in the context of an infectious, macrophage-tropic HIV-1 molecular clone. One mutant, HIV-1 delta D(35)E, containing a 37-residue deletion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 71 9  شماره 

صفحات  -

تاریخ انتشار 1997